					マッハ数(M)								
研究機関名	部署名	装置名称(通称)	装置の特徴	形式	淀み点エンタルピー (h0) 淀み点温度(T0) 全圧(P0)	試験時間 (代表値)	試験部寸法	その他仕様	計測装置	設置年度	共同研究に よる使用	他研究機関 単独での使 用	参照URL
室蘭工業大学	航空宇宙機システム 研究センター	超音速風洞(中型超音速風洞)	旧東大宇航研の 超音速風洞のノ ズルブロックと天 秤支持装置を移 設したもの	吸込式	M=2,3,4		縦400mm×横 400mm×長さ 400mm	現在は真空槽200立米。年次計画で 500立米まで増設する予定	シュリーレンン光学系(φ300)、6 分力内装天秤(φ12、垂直力容量 20kgf、軸力容量8kgf)	2006	可	不可	http://www.aprec.muroran- it.ac.jp/setubi/setubi_wt.html
琉球大学	エ学部機械システム エ学科	超音速風洞	吐き出し流量が 比較的大きい 6.1m ² 3/min	噴出式	M=2 P0=0.7MPa	風洞圧力比 によるが基 本的に連続 運転可能	利比 I UIIIIII へ 中田		シュリーレン光学可視化. 赤外線 映像装置(120f/s), 高速度カメラ (240000f/s), 45点スキャニバル ブ、半導体小型圧力変換器	1995	可	不可	
名古屋大学	工学研究科航空宇 宙工学 専 攻	超音速風洞		噴出式	M=1.5, 2.0, 2.5 P0=0.2~0.3MPa		テストセクショ ン (横150mm × 縦200mm× 長さ200mm) 観測窓 (ϕ 150mm)	Re=2.4×10°7~3.07×10°7 調圧弁·コントロール装置(開度調 節)、中圧空気貯槽最大設計圧力 40kg/cm²2(昭和46年製造),高圧空 気圧縮設備,冷却塔	シュリーレン可視化装置一式(凹面鏡 φ 210×2個 f1920mm, 凹面鏡 φ 150 f1349mm, 光源, ハロゲンランブ)、圧力変換装置一式、PSP, TSP, オイルフロー可視化用材, 三分力天秤, デジタルカメラ, デジタルビデオカメラ compressor(校正用)	1958	可	不可	
名古屋大学	工学研究科航空宇 宙工学専攻	超音速風洞(推進エ ネルギーシステムエ 学超音速風洞)		噴出式	M=1.5~3.0 P0=4.5MPa	30s (マッ ハ数に依 存)	縦60mm×横 60mm×長さ 500mm		シュリーレンン光学系	2005	可	可	
名古屋工業大学	ながれ領域	超音速風洞		吸込式	M=1.5~2.8 T0=室温	2~4s	断面積:約 50mm× 40mm=100mm × 20mm=2000m m^2,流れ方 向50~100mm	最低圧: 0.01MPa	コンパクトシュリーレンφ =80[mm], 高速度カメラ1000[fps]	2001	可	可	
防衛大学校	システム工学群・航 空宇宙工学科	超音速風洞		噴出式	M=2.0, 3.0, 4.0(固定ノ ズル) P0=2.7MPa	30s(M=3.0ノ ズル)	縦150mm×横 150mm×長さ 300mm	12m^3×2	シュリーレンン光学系	1959	可	不可	
防衛大学校	システム工学群・航空宇宙工学科	超音速風洞(小型超音速燃焼風洞)	大気吹放式	噴出式	M=1.8 P0=1.5MPa	20s	縦63mm×横 63mm×長さ 300mm	2007年より全温度向上計画(最終目標1000°C)	シュリーレン光学系、混合気濃度 計測、静圧・ピトー圧計測	2002	可	不可	
防衛省 技術研究本部	札幌試験場	三音速風洞装置	高レイノルズ数かつ、亜音速、遷音速、超音速の3つの音速域の試験が可能	間欠吹出式	M=0.3~4.0 P0=1.4MPa	10s以上	縦2000mm× 横2000mm	遷音速測定部壁:スプリッタ付き斜め 穴多孔壁:支持方式:スティングスト ラット方式、試験間隔:45分以内、騒 音値:敷地境界にて65dB以下	6分力計測、圧力計測、シュリーレン計測	2005	可	可	
防衛省技術 研究本部	陸上装備研究所	高速風洞	連続式可変ノズル	連続循環式	M=1.4~3.0 P0=大気圧	制限なし	260mmWx 300mmH		シューリーレン光学系、6分カ天 秤	2001	可	可	
東北大学	流体科学研究所	吸込み式超音速風 洞		吸込式	M=1.7	13s	縦60mm×横 60mm×長さ 220mm(測定 部)	低圧タンク11.5m ² 3	シュリーレン光学系、圧力計測系	2005	可	不可	
東京大学	大学院新領域創成 科学研究科先端エ ネルギーエ学専攻	極超音速高エンタルピー風洞	極超音速風洞と 燃焼風洞の2種 類の使用が可 能。	噴出式	M=7,8(極超音速風洞) T0=最高 800°C,P0=0.95MPa(極 超音速風洞) T0=1500°C,P0=0.7MPa (燃焼風洞)	最長50s(極超音速風洞)、最長100s(燃焼風洞)	ノズル出口直 径200mm(極 超音速風 洞)、燃焼風 洞はユーザー が設置。	排気は真空槽(極超音速風洞)および消音塔を経て大気開放(燃焼風洞)。	シュリーレン光学系(極超、燃焼とも)、6分力天秤(極超音速風洞)、 計測PC	2006	可	不可	http://daedalus.k.u- tokyo.ac.jp/wt/wt_index.htm
東京大学	大学院新領域創成 科学研究科先端エ ネルギーエ学専攻	小型超音速風洞	フリージェット型 測定部	噴出式	M=2 P0=0.25MPa T0=常温	5s以下	ノズル出口 80mmX80mm (2次元ノズ ル)		シュリーレン光学系	2003	可(ただし、 主に学部生 向け学生実 験用)	不可	

(1)超音速風洞(1s以上)

			J. T			1	40		ı				1
鳥取大学	工学部 機械工学科	超音速風洞	小型, 短時間で 高ラン数	吸込型	M=1.7	4 s	40mm × 40mm	二次元ノズル,全面可視化	シュリーレン装置, 圧力測定	2006	不可	不可	
東京工業大学	大学院総合理工学 研究科 創造エネル ギー専攻	クローズドサイクル MHD発電用超音速 クローズドループ実 験装置 (Super CLEF)	高温希ガス(アルゴン, 1850K)循環, 電気ヒータ加熱方式	閉ループ循環方式	P0=0.44MPa T0=1,850K	連続	スロート断面 積〜20cm2程 度以下	クローズドサイクルMHD発電実証試験用であるので、かなり特殊ではあるが、起電導電磁石(4.0T.400mmボア)、アルカリ金属シード注入装置等を有する。よどみ点流量・圧縮比:700Nm3/h/・8.0(いずれも代表値)	圧力・温度センサー, 分光計測な ど基本的な計測のみ可能	2007	応談	不可	
大阪府立大 学	大学院工学研究科 航空宇宙工学分野	吹出式超音速風洞		吹出式超音速風 洞	M=2.5~4.0	30s	100mm x 100mm		シュリーレン光学系	1962	可	不可	
大阪府立大 学	大学院工学研究科 航空宇宙工学分野	大型吸込式超音速 風洞	貯気槽状態は大 気圧	吸込式	M=2.43	10s	80mm x 80mm		シュリーレン光学系, ピトー管, 熱線プローブ	1973	可	不可	
大阪府立大 学	大学院工学研究科 航空宇宙工学分野	小型吸込式超音速 風洞		吸込式	M=2.0~2.5	60s(マッハ 数による)	30mm x 18mm		シュリーレン光学系, ピトー管, 熱 線プローブ, PIV	2003	可	不可	
青山学院大学	理工学部機械創造 工学科	超音速風洞		噴出式	M=1.3~2.5 P0=2.0MPa	10s	縦100mm x 横80mm x 長さ約500mm		シュリーレン光学系, 高速度カメラ (4x10^4 frames/s, 1024~ 16384frames)(5x10^9 frames/s, 2 frames), LIF・PIVシステム	1975	可	不可	
青山学院大学	理工学部機械創造 工学科	パルスデトネーショ ン溶射装置	角管		M=3~4 T0=3000K	10min	縦20mm×横 15mm	ステンレス製	シュリーレン光学系, 高速度カメラ (4x10^4 frames/s, 1024~ 16384frames)(5x10^9 frames/s, 2 frames), LIF・PIVシステム	2007	可	不可	
室蘭工業大学	機械システム工学科	超音速風洞(吹き出し吸い込み式超音速 風洞)		吹出・吸込式	M=2,4	10s	内部流動測定 胴: 縦80mm× 横80mm×長 1500mm、外 部流動測定 胴: 長80mm		シュリーレンン光学系 (φ 200) 、高速度カメラ	1998	可	不可	
佐賀大学	機械システム工学科	超音速風洞(間欠式)	よどみ室の初期 相対湿度の設定 が可能	吸込式	M=0.7~2.0	4∼6s	縦60mmX横 38mmX長さ 200mm		シュリーレン光学系、高速度カメラ (30~40500flames/s)	1989	可	不可	
九州大学	総合理工研究院 エ ネルギー環境共生 工学部門	吹出式超音速風洞	高圧空気源が2 台あり、高速混合 流れの実験が可 能	吹出式	M∼2.5 P0=3MPa/1MPa	30s	縦40mm×横 80mm×長さ 500mm		シュリーレンン光学系、スキャニー バルブよる圧力測定	1982	可	不可	http://mac507.ence.kyushu- u.ac.jp/Doc/exp-j.html#e3
九州大学	総合理工研究院 エ ネルギー環境共生 工学部門	吸込式超音速風洞	真空タンクへの 吸込式なので、 流れの乱れが少 ない。三次元の 測定可能。	大気吸込式	M~1.5	30s	縦25mm×横 30mm×長さ 200mm	大気圧乾燥気体の使用可能、真空タンク	レーザー誘起蛍光法による3Dの 密度、マッハ数の測定	1982	可	不可	http://mac507.ence.kyushu- u.ac.jp/Doc/exp-j.html#e3
九州大学	総合理工研究院 エ ネルギー環境共生 エ学部門	大気吹出式超音速 噴流装置	無響室内設置さ れており、超音速 噴流の騒音測定 が可能	吹出式	M~2.0	30s	出口径25mm のラバルノズ ル	無響室寸法4.9mX4.9mX4.9m	シュリーレンン光学系、騒音FFT測 定装置	2000	可	不可	
宇宙航空研究開発機構	宇宙科学研究本部	高速気流総合実験設備	装置全般が自動 運転制御式で、 操作性・安全性 に優れたシステ ム	吹下型 (エジェクタ 排気併用式)(超音 速風洞)	M=1.5~4.0 P0=931.6kPaG	30s以上	600mm × 600 m	貯気槽内容積 = 1767m3 迎角、横滑り角±17度以内	天秤, 圧力変換器、シュリーレン 光学系, 高速度ビデオカメラ など	1989	可	不可	
	総合技術研究本部 角田宇宙センター	ラムジェットエンジン 試験設備	超音速燃焼試験 設備	蓄熱体加熱/燃 焼加熱 エンジン 試験風洞	模擬飛行マッハ数-4, 6,8 実マッハ数-3.4,5.3, 6.7 TO/P0(M=4: 884K/0.87MPa, M=6: 1600K/5MPa, M=8: 2560K/10.3MPa)	60s (M=8条 件では30s)	設備ノズル出 ロ寸法: 510mm × 510mm 自由 噴流		シュリーレン装置、ガスサンプリン グ装置、カ・圧力・温度計測	1993	可	不可	NAL TR-1347 http://www.iat.jaxa.jp/kspc/japanese/ tf/rjtf.htm